Code: CE2T1, ME2T1, CS2T1, IT2T1, EE2T1, EC2T1, AE2T1
I B. Tech - II Semester - Regular/Supplementary Examinations Aprii - 2019

ENGINEERING MATHEMATICS - II
 (Common for all Branches)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Define the following terms: i) Consistency ii) Trivial Solution for Homogeneous System of Equations.
b) For a non-homogeneous system, when we say the system is consistent and in what case we get infinite number of solutions?
c) Find the eigen values of $A^{2}-2 A+I$, where

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 4 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

d) Two eigen values of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are equal to 1 each. Find the eigen values of A^{-1}.
e) Write the statement of Cayley-Hamilton theorem.
f) Find the Laplace transform of $\sin 2 t \cos 3 t$.
g) Find the inverse Laplace transform of $\frac{1}{s^{2}-5 s+6}$.
h) Write the Fourier series for the function $f(x)$ in the interval $-c<x<c$.
i) Define the Fourier transform and inverse Fourier transform of a function.
j) Write the convolution theorem in Z-transforms.
k) Show that $z\left(\frac{1}{n+1}\right)=z \log \left(\frac{z}{z-1}\right)$.

PART-B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) For what values of μ, λ the simultaneous equations

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu \text { have }
\end{aligned}
$$

i) No solution
ii) Unique solution
iii) Infinite number of solutions
b) Apply Gauss elimination method to solve the following system of equations

$$
x+4 y-z=-5, \quad x+y-6 z=-12, \quad 3 x-y-z=4
$$

3. a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and find its inverse. Also express

$$
\begin{aligned}
& A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I \text { as a linear polynomial } \\
& \text { in } \mathrm{A} . \\
& 8 \mathrm{M}
\end{aligned}
$$

b) Find the eigen values and eigen vectors of the following

$$
\operatorname{matrix} A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

4. a) Find the Laplace transform of the following functions
i) $\frac{\left(e^{-a t}-e^{-b t}\right)}{t}$
ii) $f(t)=\left\{\begin{array}{l}4, \text { when } 0 \leq t \leq 1 \\ 3, \quad \text { when } t>1\end{array}\right.$

8 M
b) Use Laplace transform to solve

$$
\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t} \text { with } x=2, \frac{d x}{d t}=-1 \text { at } t=0
$$

5. a) Find the Fourier series to represent $f(x)=e^{x},-\pi<x<\pi$ and hence derive a series for $\frac{\pi}{\sin h \pi}$ 8 M
b) Find the Fourier sine and cosine transform of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
\sin x, \text { if } 0<x<a \\
0, \text { if } x \geq a
\end{array}\right\}
$$

6. a) If $z[f(n)]=\frac{5 z^{2}+3 z+12}{(z-1)^{4}}$, find $f(2)$ and $f(3)$
[^0]
[^0]: b) Solve

 8 M

 $$
 u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n} \text { given that } u_{0}=0, u_{1}=1
 $$

